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Abstract In Sun and solar-type stars, there is a critical dynamo number for the
operation of a large-scale dynamo, below which the dynamo ceases to operate.
This region is known as the subcritical region. Previous studies showed the pos-
sibility of operating the solar-like large-scale (global) dynamo in the subcritical
region without a small-scale dynamo. As in the solar convection zone, both
large- and small-scale dynamos are expected to operate at the same time and
location, we check the robustness of the previously identified subcritical dynamo
branch in a numerical model in which both large- and small-scale dynamos are
excited. For this, we use the Pencil Code and set up an αΩ dynamo model with
uniform shear and helically forced turbulence. We have performed a few sets of
simulations at different relative helicity to explore the generation of large-scale
oscillatory fields in the presence of small-scale dynamo. We find that in some
parameter regimes, the dynamo shows hysteresis behavior, i.e., two dynamo
solutions are possible depending on the initial parameters used. A decaying
solution when the dynamo was started with a weak field and a strong oscillatory
solution if the dynamo was initialized with a strong field. Thus, the existence
of the sub-critical branch of the large-scale dynamo in the presence of small-
scale dynamo is established. However, the regime of hysteresis is quite narrow
with respect to the case without the small-scale dynamo. Our work supports
the possible existence of large-scale dynamo in the sub-critical regime of slowly
rotating stars.
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1. Introduction

The Sun exhibits magnetic fields and cycles of remarkable complexity. Unlike
clockwork, its magnetic behavior is not strictly periodic; instead, it demonstrates
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a dynamic interplay of various characteristics, including cycle duration and am-
plitude, which vary from one cycle to the next (Hathaway, 2015; Karak, Mandal,
and Banerjee, 2018). At times, the Sun enters phases of grand minima, character-
ized by extended periods of low magnetic activity. Analyses of radiocarbon data
of last several thousand years unveiled several such instances (Usoskin, Solanki,
and Kovaltsov, 2007; Usoskin, 2013; Biswas et al., 2023).

This intricate dance of magnetic fields and cycles finds its origins in the mecha-
nism of the large-scale dynamo (Moffatt, 1978). This process lays the foundation
for the creation and sustenance of the magnetic fields that envelop the Sun.
The large-scale dynamo is the foundational mechanism behind generating the
magnetic field. It operates globally in the solar convection zone and establishes
substantial magnetic fields extending over the surface. This dynamo action is
powered by helical convection and differential rotation in the solar convection
zone. This is because the toroidal field is generated through the stretching of the
poloidal field by the differential rotation, known as the Ω effect. This toroidal
field gets converted into the poloidal one via helical flow formally known as
α effect (Parker, 1955; Steenbeck, Krause, and Rädler, 1966). There is another
additional mechanism for the generation of the poloidal field in the Sun known as
the Babcock–Leighton process (see Charbonneau, 2020; Karak, 2023, for recent
reviews on dynamo modelling using this process).

Observations have revealed an intriguing type of magnetic field that persists
even in the quiet phase of the sun, which is commonly referred to as a small-scale,
fluctuating, turbulent, or internetwork field—as it exists in the internetwork
regions. This field exists in mixed polarity even at the resolution limits of
present-day instruments. Despite the longstanding awareness of the existence of
this magnetic field (e.g., Frazier and Stenflo (1972); Stenflo (2012)), a detailed
understanding of its nature and origin has remained an ongoing challenge (Rem-
pel et al., 2023). The presence of this magnetic field rises from the mechanism
referred to as the small-scale (local) dynamo. This process involves amplifying
a seed magnetic field through repeated random stretching, bending, and folding
within a sufficiently random three-dimensional velocity field, all without net
helicity.

There is a possibility that the quiet-Sun magnetic field could be attributed
to a large-scale global dynamo. This concept suggests that the disintegration of
a large-scale magnetic field could generate a small-scale magnetic field by trans-
ferring magnetic energy to smaller scales. Additionally, it can be argued that the
decay of active regions might contribute to forming small-scale magnetic fields
(Spruit, Title, and van Ballegooijen, 1987; de Wijn et al., 2005; Stenflo, 2012;
Karak and Brandenburg, 2016). Nonetheless, it is worth noting that none of these
arguments can be conclusively affirmed. The small-scale magnetic field exhibits
characteristics that do not align with the solar cycle, as it lacks a significant
correlation with the larger-scale global magnetic cycle. Moreover, it displays
no latitudinal variation, as demonstrated by various studies (e.g., Hagenaar,
Schrijver, and Title (2003); Sánchez Almeida (2003); Lites et al. (2008); Lites
(2011); Buehler, Lagg, and Solanki (2013); Jin and Wang (2015)). The purpose
of the present study is to explore the bistability of the large-scale dynamo in the
presence of a small-scale dynamo with an αΩ dynamo.
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In the αΩ dynamo model, there exists a critical parameter known as the
critical dynamo number below which the magnetic field ceases to operate, re-
sulting in a decaying field (Parker, 1955; Choudhuri, 1998; Brandenburg and
Subramanian, 2005). This regime is referred to as the subcritical dynamo phase.
Conversely, when the dynamo number exceeds this critical value, the system
enters the supercritical dynamo phase, characterized by sustained magnetic field
generation. This dynamo transition has been extensively documented in studies
focusing on large-scale dynamo (Choudhuri, 1998). It is interesting to know
in what regime the solar dynamo operates. Observations (Rengarajan, 1984;
Metcalfe, Egeland, and van Saders, 2016) and dynamo modeling (Kitchatinov
and Nepomnyashchikh, 2017; Vashishth, Karak, and Kitchatinov, 2021; Kumar,
Karak, and Vashishth, 2021; Cameron and Schüssler, 2017; Vashishth, Karak,
and Kitchatinov, 2023; Ghosh et al., 2024) hint that the solar dynamo is possibly
operating near the critical dynamo transition or at least not in highly supercrit-
ical reguime. Recent investigations using mean-field modelling (Kitchatinov and
Olemskoy, 2010; Vashishth, Karak, and Kitchatinov, 2021) and turbulent nu-
merical simulations (Karak, Kitchatinov, and Brandenburg, 2015; Oliveira et al.,
2021) have unveiled intriguing phenomena suggesting that the dynamo process
can persist even in subcritical regions. This behavior is manifested through
hysteresis, a phenomenon observed in the context of large-scale dynamo dy-
namics. Complementing these findings, Mannix, Ponty, and Marcotte (2022),
underscores the effectiveness of nonlinear optimization—previously utilized for
identifying minimal disturbances in shear flows—as a potent numerical approach
for methodically probing subcritical dynamo actions in electrically conducting
flows.

The aforementioned studies did not capture the operation of the small-scale
dynamo, which is ubiquitous in solar/stellar convection zones. It is obvious that
the operation of the large-scale dynamo is affected by the small-scale dynamo-
generated field. While some studies have explored the interaction of small-scale
dynamo on large-scale one (e.g., Karak and Brandenburg, 2016; Bhat, Subra-
manian, and Brandenburg, 2016), here we are interested in the possibility of
dynamo hysteresis behavior of the large-scale magnetic field in the presence
of small-scale dynamo to demonstrate the robustness of the operation of the
subcritical dynamo.

2. Model

Following the works of Karak et al. (2015); Karak and Brandenburg (2016), we
build our theoretical αΩ dynamo model assuming an isothermal and compress-
ible environment. The pressure in this medium is characterized by the equation
of state p = c2sρ, where cs represents the constant speed of sound, and ρ signifies
the density. The fundamental equations governing this model are:

DU

Dt
= −SUxŷ − c2s∇ ln ρ+ ρ−1 [J ×B +∇· (2ρνS)] + f , (1)
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D ln ρ

Dt
= −∇ ·U , (2)

∂A

∂t
+U

(S) ·∇A = −SAyx̂+U ×B + η∇2A. (3)

In these equations, D/Dt denotes the advective time derivative, expressed

as D/Dt = ∂/∂t + (U + U
(S)

) · ∇. The term U
(S)

= (0, Sx, 0) with S =
const represents the large-scale externally applied uniform shear flow. Other
parameters include the magnetic vector potential A, the magnetic field B =
∇ × A, the microscopic diffusivity η, the kinematic viscosity ν, the current
density J = µ−1

0 ∇×B, and a specific forcing function f .
The traceless rate of the strain tensor S is represented by Sij = 1

2 (Ui,j +

Uj,i) − 1
3δij∇ · U , ignoring the minimal contribution of U

(S)
. In this equation,

the commas denote partial differentiation with respect to the coordinate (i or
j).

Turbulence in this environment is sustained by supplying energy to the system
through a helical and temporally random in time (δ-correlated) forcing function
f = f(x, t). This forcing function is defined as

f (x, t) = Re{Nfk(t) exp[ik(t) · x+ iφ(t)]}. (4)

Here, x denotes the position vector, k(t) is a random wavevector chosen at
each timestep from a certain range of many possible wavevectors, and the phase
−π < φ(t) ≤ π also varies randomly at each timestep. On dimensional grounds,
we choose N = f0cs(|k|cs/δt)1/2, where f0 is a dimensionless forcing amplitude.

The generation of transverse helical waves is facilitated through the utilization
of Fourier amplitudes (Haugen, Brandenburg, and Dobler, 2004),

fk = R · f (nohel)
k

with Rij =
δij − iσǫijk k̂k√

1 + σ2
, (5)

where σ represents the degree of helicity in the forcing, with σ = 1 indicating the
highest positive helicity. The formulation of the non-helical forcing function is

represented with, f
(nohel)
k

= (k × ê) /
√

k
2 − (k · ê)2, where ê is an arbitrary unit

vector that is not in alignment with k. Note that |f
k
|2 = 1 and f

k
· (ik×f

k
)∗ =

2σk/(1 + σ2).
The fluid and magnetic Reynolds numbers and the magnetic Prandtl number

are defined as

Re =
urms

νkf
, Rm =

urms

ηkf
, Pm =

ν

η
, (6)

where urms = 〈u2〉1/2 is the root-mean-square (rms) value of the velocity in the
statistically stationary state. Here, 〈·〉 indicates the averaging across the entire
domain, and kf is the average forcing wavenumber. To investigate the small-scale
dynamo effects alongside the large-scale dynamo, we maintain a large value of
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Figure 1. (a) Normalized temporal mean of rms value of the large-scale magnetic field and
(b) temporal mean of urms as a function of σ.

Rm and dynamo number, D which is defined as

D = CαCΩ where, Cα =
α0

ηT0k1
and CΩ =

|S|
ηT0k21

, (7)

as elaborated in Table 1. Here, α0 = −τ〈ω ·u〉/3, ηT0 is the total magnetic diffu-
sivity and is given by ηT0 = η + ηt0, with ηt0 = τ(〈u〉2)/3, and τ = (urmskf )

−1.
In this work, we have followed Run IV of Karak and Brandenburg (2016), which
excites both the large-scale and small-scale dynamos.

To establish a connection with solar/stellar convection zones, we imagine a
3D box positioned at the northern hemisphere of the sun, with dimensions of
Lx = Ly = Lz = 2π. In this configuration, x, y, z coordinates correspond to the
radially outward, azimuthal (toroidal), and latitudinal directions, respectively.
The boundary conditions implemented in our model are shearing–periodic along
the x-axis and simple periodic along the y and z axes. For all of our simulations,
we consistently use S = −0.05, f0 = 0.01, and kf = 3k1, where k1 = 2π/Lx = 1
represents the smallest wavenumber achievable in the given spatial domain. In
terms of units, we adopt a non-dimensional approach by assigning the values
cs = ρ0 = µ0 = 1, where ρ0 = 〈ρ〉 is the time-invariant volume-averaged density
and µ0 is the magnetic permeability. For the initial conditions, we set both u and
ln ρ to zero and introduce a small-scale Gaussian noise with a low amplitude of
10−4 into the magnetic vector potential. All numerical simulations in this study
were conducted using the Pencil Code 1 (Pencil Code Collaboration et al.,
2021). The grid resolution of all runs presented in this paper is 144× 144× 144.

3. Results & Discussion

In our study, we conducted a series of simulations by systematically altering the
helicity parameter σ, which is the characteristic parameter of the turbulent forc-
ing. We examined the large-scale magnetic field by evaluating the quantity, Brms,

1http://github.com/pencil-code
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Table 1. Summary of all of the runs starting with weak seed field are listed along with the
control parameters Re, Rm, urms, σ. The table also contains the run time (Tr (in diffusion

time scale), normalized temporal mean of the large-scale field B̃rms and small-scale field, b̃,
and their ratio. For Runs A–I, kf = 3.1 and ν = 5× 10−3, while in Run F', kf = 5.1 and

ν = 10−2. For all the runs, Pm = 5. S/D denotes a stable or decaying solution.

Run σ Tr urms Re Rm D B̃rms b̃
˜
Brms

˜
b

S/D

A 0.10 10 0.202 13.05 65.27 116.17 0.062 0.032 1.93 D

B 0.12 10 0.201 13.02 65.14 127.25 0.063 0.034 1.85 D

C 0.13 10 0.201 12.98 64.92 138.76 0.064 0.044 1.45 D

D 0.14 10 0.200 12.91 64.59 150.99 0.068 0.057 1.19 D

E 0.15 20 0.197 12.76 63.81 165.77 0.072 0.059 1.22 D

F 0.16 200 0.155 10.04 50.20 285.71 0.432 0.280 1.54 S

G 0.17 10 0.156 10.06 50.34 301.79 0.507 0.284 1.78 S

H 0.18 10 0.154 9.96 49.83 326.21 0.615 0.294 2.09 S

I 0.19 10 0.156 10.07 50.35 337.15 0.630 0.294 2.14 S

F' 0.16 20 0.1015 1.983 9.915 120.61 2.773 0.376 4.65 S

which is the temporal mean in the stationary state of the large-scale field over

the whole domain and is formulated as, B̃rms = 〈〈Bx〉y2 + 〈By〉y2 + 〈Bz〉y2〉1/2xzt .
The small-scale field is defined as the residual of the total and the large-scale

quantities and thus defined as b2 = B2 − B
2
. Our findings, as illustrated

in Figure 1, demonstrate the temporal mean of the large-scale magnetic field,

denoted as B̃rms which we normalized with Beq(= urms), which is the volume-
averaged equipartition magnetic field. This normalization provides a context for
the background magnetic field. The set of parameters used in these simulations
is summarized in Table 1. Our analysis indicates that for values of the helicity
parameter σ lower than approximately 0.16, dynamo activity is notably absent,
as indicated by the absence of a large-scale magnetic field (see Table 1).

For Run E, σ = 0.15, as illustrated in Figure 2a, we demonstrate the spatial-
temporal behavior of the mean magnetic field’s y-component , By (corresponding
to the toroidal field in spherical coordinates) and the corresponding time series
of B2

y at a chosen mesh point, normalized by B2
eq (corresponding to the measure-

ments compared with the solar magnetic cycle). Notably, there are no distinct
magnetic oscillations observed in this scenario. Although a few cycles emerge in
the initial time stage, they are short-lived, and the overall magnetic field remains
weak. This weak large-scale field disappears after some time, as confirmed by
running it for a longer time. A slight increase in σ leads to a dynamo transition
at σ ≈ 0.16, with the magnetic field becoming significantly stronger than the

background (B̃rms > Beq), suggesting a critical σ value near 0.16 for dynamo
activity. Figure 2b depicts the spatial-temporal variation in this case, revealing
clear magnetic cycles and dynamo wave propagation in the positive z-direction.
Figure 3(a) and (b), present the spatial-temporal behavior of the small-scale
field (b2) normalized with B2

eq at σ = 0.15 (Run E) and σ = 0.16 (Run F),
respectively.
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Large-scale dynamo in the presence of the small-scale dynamo

(a) (b)

Figure 2. Top: Butterfly diagrams of the large-scale magnetic field, By(π, z, t). Bottom: Time

series plots of By(x, z, t) taken from an arbitrarily chosen mesh point as a function of time
normalized by the diffusive time (k2

1
η)−1. These results are from a simulation initiated with a

weak seed field at (a) σ = 0.15 (Run E, Subcritical) and (b) σ = 0.16 (Run F, Critical).

(a) (b)

Figure 3. Top: butterfly diagrams of the small-scale magnetic field, b2(π, z, t). Bottom: time
series plots of b2(x, z, t) taken from an arbitrarily chosen mesh point as a function of time
normalized by the diffusive time scales. These results are from a simulation initiated with a
weak seed field at (a) σ = 0.15 (Run E, Subcritical) and (b) σ = 0.16 (Run F, Critical).

Disentangling the origin of these variations is challenging, as the small-scale
magnetic field in our simulation arose from the activity of both the small-scale
dynamo, represented as b2SSD and the entanglement with the large-scale field,
denoted as b2tang. These quantities are closely interconnected and evolve in tan-
dem with the development of the large-scale field. In the early stages, when the
large-scale field is still emerging, the small-scale field is predominantly driven by
the small-scale dynamo, resulting in b2 being approximately equivalent to b2SSD.
Subsequently, as the large-scale field becomes more pronounced, an observable
increase in b2 is largely attributed to the tangling effects of the large-scale field.
However, upon reaching a specific threshold of B2, b2tang tends to saturate.

To enhance understanding of this phenomenon, we have added a new run
involving only the large-scale dynamo (similar to Run 2 of Karak and Branden-
burg (2016)). In this run, we increased the viscosity (ν) from 5× 10−3 to 10−2,
to ensure that the small-scale dynamo does not operate (see Table 1). Figure 5
provides a comparison between the scenarios where only the large-scale dynamo
is evolved and where both the large-scale and small-scale dynamos are evolved
together. From Figure 5a, it can be observed that the small-scale field is five
times weaker than the large-scale field and becomes significant only when the
large-scale field begins to grow. Additionally, Figure 5b clearly shows that the
small-scale field develops significantly faster than the large-scale field.

So far, in the previous simulations, we used a random weak seed field as an
initial condition. Now, we expand our study by initiating a new simulation, where
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Figure 4. Butterfly diagram the large-scale magnetic field, By(π, z, t) when the simulation
started with a strong magnetic field for the subcritical dynamo Run E (σ = 0.15).

(a) (b)

Figure 5. Time series of the large-scale (black/solid line) and small-scale (red/dash line)
fields, when (a) large-scale dynamo is excited, and (b) both large- and small-scale dynamos
are excited at the same time. Results of (b) are taken from Run F at σ = 0.16 (i.e., the critical
value in this setup), while in (a), the parameters are the same except the value of kf and ν

are changed to 5.1 and 10−2 (Run F').

0.12 0.14 0.16 0.18
Relative helicity (σ)

0.1

0.2

0.3

0.4

0.5

0.6

B̃ r
m
s/B

eq

Inital Weak Magnetic field
Inital Strong Magnetic field

Figure 6. Dynamo hysteresis: Variation of the temporal mean of rms value of the large-scale
magnetic field normalized to Beq as a function of helicity parameter σ from simulations started
with a weak seed field (red filled circles) and from simulations started with a strong field of
previous simulation (blue stars).
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we use a snapshot from the run at σ = 0.17 (Run G) as the initial condition
and introduce it into the run at σ = 0.16 (Run F). Next, we perform a sequence
of simulations by systematically decreasing the value of σ, with each simulation
using the output of the preceding one as its initial condition. Our observations
unveiled the oscillatory solutions spanning a broad range of σ values, particularly
within the interval 0.13 ≤ σ < 0.16. Remarkably, these oscillations persisted
even in scenarios where a decaying magnetic field had been present earlier. This
behavior is illustrated in Figure 4, which showcases a snapshot of the oscillating
field within the sub-critical region.

As presented in Figure 6, a hysteresis curve is demonstrated. Within a specific
range of the dynamo parameter, we identified a regime where two possible solu-
tions coexist: a weak, decaying magnetic field and a robust, oscillatory magnetic
field. The ultimate output depends heavily on the initial conditions. Notably,
simulations initiated with weak magnetic fields consistently resulted in decaying
solutions within this parameter range, emphasizing the system’s sensitivity to its
starting state. Consequently, this region exhibits bistability. It is important to
emphasize that all simulations were conducted for several hundreds of diffusion
times to ensure the stability of their respective states. Therefore, our work gives
additional support to the dynamo hysteresis behavior in the αΩ type dynamo
model, suggesting that such hysteresis is probably a characteristic feature of the
αΩ type solar dynamo, even in the presence of a small-scale magnetic field.

4. Conclusions

Previous study (Karak, Kitchatinov, and Brandenburg, 2015) demonstrated the
existence of two distinct dynamo modes within the subcritical region of the large-
scale dynamo, i.e., there is a presence of a hysteresis behavior in the system
where, depending on the initial conditions, the system exhibits bistability by
accommodating both non-decaying oscillatory and decaying dynamo solutions.

Building upon this foundation, our current work takes a significant step
forward by incorporating the small-scale dynamo. In real sun scenarios, both
the large-scale and small-scale dynamos operate concurrently at the same lo-
cation. Consequently, we have identified that the features we previously ob-
served in the presence of only large-scale dynamo also manifest in the presence
of the small-scale dynamo—thus affirming the continued existence of dynamo
hysteresis.

To demonstrate this, we utilized the Pencil Code to establish an αΩ dynamo
model featuring uniform shear and helically induced turbulence. Through a series
of simulations conducted at varying relative helicity levels, we explored the gen-
eration of large-scale oscillatory magnetic fields in conjunction with small-scale
dynamo processes.

In summary, our findings not only validate but also strengthen the conclusions
drawn in our earlier work, providing a more comprehensive understanding of
dynamo behavior in both large and small scales.
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G., Snodin, A., Losada, I., Pekkilä, J., Qian, C.: 2021, The Pencil Code, a modular MPI
code for partial differential equations and particles: multipurpose and multiuser-maintained.
The Journal of Open Source Software 6, 2807. DOI. ADS.

Rempel, M., Bhatia, T., Bellot Rubio, L., Korpi-Lagg, M.J.: 2023, Small-Scale Dynamos: From
Idealized Models to Solar and Stellar Applications. Space Sci. Rev. 219, 36. DOI. ADS.

Rengarajan, T.N.: 1984, Age-rotation relationship for late-type main-sequence stars. Astro-
phys. J. Lett. 283, L63. DOI.

Sánchez Almeida, J.: 2003, Inter-Network magnetic fields observed during the minimum of the
solar cycle. Astron. Astrophys. 411, 615. DOI. ADS.

Spruit, H.C., Title, A.M., van Ballegooijen, A.A.: 1987, Is there a weak mixed polarity
background field? Theoretical arguments. Sol. Phys. 110, 115. DOI. ADS.
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